JOM 23129

Reactions of the cationic bis(but-2-yne) complex [W(CO)(NCMe)($S_2CNC_4H_8$)(η^2 -MeC₂Me)₂][BF₄] with bidentate anionic oxygen and sulphur donor ligands

Paul K. Baker and Kevin R. Flower

Department of Chemistry, University of Wales, Bangor, Gwynedd LL57 2UW (UK) (Received July 6, 1992)

Abstract

Treatment of the complex [W(CO)(NCMe)(S₂CNC₄H₈)(η^2 -MeC₂Me)₂**[**BF₄] with an equimolar quantity of M(LL)[M(LL) = Na-[S₂CNMe₂] · 2H₂O, Na[S₂CNEt₂] · 3H₂O, Na[S₂CN(CH₂Ph)₂], [NH₄**I**S₂CNC₄H₈], K[S₂COEt], Na[OC(CH₃)CHCO(CH₃)], Na-[OC(CF₃)CHCO(CF₃)] or Na[OC(Ph)CHCO(CH₃)]) at room temperature in CH₂Cl₂ affords good yields of the new neutral mixed-ligand complexes [W(CO)(LL)(S₂CNC₄H₈)(η^2 -MeC₂Me)] (1-8). ¹³C NMR spectroscopy indicates that the but-2-yne is acting as a four-electron donor in these complexes.

1. Introduction

Alkyne complexes of molybdenum and tungsten have received considerable attention in recent years [1-7]. Complexes containing one or two dithiocarbamates have been reported. For example, reaction of the electrophilic reagent $[Mo(CO)_2(S_2CNEt_2)_2]$ with a variety of alkynes afforded [Mo(CO)(S_2CNEt_2)₂(η^2 -RC₂R')] $(R = R' = H, Ph, CO_2Me; R = H, R' = Me \text{ or } Ph; R$ = Me, R' = Ph) [8]. These complexes may also be prepared from either [Mo(CO)(S_2CNEt_2)₂(η^2 -HC₂H)] or $[Mo(CO)_2L(S_2CNEt_2)_2]$ (L = CO or PPh₂) [9] by treatment with an alkyne to give a product in which HC_2H or L has been replaced. The analogous tungsten bis(dithiocarbamate) complexes [W(CO)(S₂CNEt₂)₂- $(\eta^2 - RC_2 R')$] (R = R' = H, Me, Et or Ph; R = H, R' = Ph) were prepared by treating $[W(CO)_2L(S_2CNEt_2)_2]$ $(L = CO [10] \text{ and } PPh_3 [11])$ with the relevant alkyne. Bennett and Boyd [12] have reported the preparation of the cyclo-octyne complexes $[M(CO)(S_2CNR_2)_2(\eta^2 (C_8H_{12})$] (M = Mo or W; R = Me or Et). Carlton and Davidson [13] reported the reactions of the bromobridged dimers $[{W(\mu-Br)Br(CO)(\eta^2-RC_2R')_2}]$ with Na[S₂PMe₂], Na[S₂CNMe₂] or Tl[2-SC₅H₄N] to yield the mono(alkyne) complexes $[W(CO)(LL')_2(\eta^2 - RC_2 - R')]$ (R = R' = Me, LL' = S₂CNMe₂ or 2-SC₅H₄N; R = Ph, R' = Me, LL' = S₂CNMe₂ or S₂PMe₂; R = R' = Ph, LL' = S₂PMe₂) or the bis(alkyne) compound [W (2-SC₅H₄N)₂(η^2 -PhC₂Ph)₂]. Davidson and Vasapollo [14] have described the preparation of [WBr(CO)(LL)-(η^2 -MeC₂Me)₂] {LL = S₂CNMe₂, S₂-PMe₂ or acetylacetonate(acac)}.

In recent years we have been investigating the chemistry of the versatile complexes $[WI_2(CO)(NCMe)(\eta^2 RC_2R_2$ (R = Me or Ph) [15], which react with one or two equivalents of dithiocarbamates and related ligands to afford [WI(CO)(S_2CX)(η^2 -RC₂R)₂] {R = Ph or Me; $X = NMe_2$, NEt₂, N(CH₂Ph)₂, OEt, NC₄H₈ or NC_5H_{10}) or $[W(CO)(S_2CX)_2(\eta^2-RC_2R)]$ (R = Me, X = NMe_2 , NEt_2 , $N(CH_2Ph)_2$, OEt, NC_4H_8 or NC_5 - H_{10} ; R = Ph, X = NEt₂ or OEt}, respectively [16]. We recently reported the preparation of the cationic complex [W(CO)(NCMe)($S_2CNC_4H_8$)(η^2 -MeC₂Me)₂]- $[BF_{4}]$ and its reactions with neutral bidentate ligands [17]. In this paper we describe the reactions of the bis(but-2-yne) complex [W(CO)(NCMe)(S₂CNC₄H₈)- $(\eta^2 - MeC_2 Me)_2 [BF_4]$ with one equivalent of the bidentate anionic ligands M(LL) $\{M(LL = Na[S_2CNMe_2]\}$. $2H_2O$, $Na[S_2CNEt_2] \cdot 3H_2O$, $Na[S_2CN(CH_2Ph)_2]$, [NH₄][S₂CNC₄H₈], K[S₂COEt], Na[OC(CH₃)CHCO- (CH_3)], Na[OC(CF_3)CHCO(CF_3)] or Na[OC(Ph)-

Correspondence to: Dr. P.K. Baker

Complexes	Colour	Yield (%)	Analytical data (found (calc.) (%))
$\frac{1 [W(CO)(S_2CNMe_2)(S_2CNC_4H_8)-}{(\eta^2-MeC_2Me)]}$	Green	56	C: 31.0 (29.4) H: 4.0 (3.8)
2 [W(CO)(S_2 CNEt ₂)(S_2 CNC ₄ H ₈)- (η^2 -MeC ₂ Me)]	Green	57	N: 4.8 (5.1) C: 31.5 (32.1) H: 4.3 (4.3)
3 [W(CO)($S_2CNC_4H_8$) ₂ (η^2 -MeC ₂ Me)]	Green	64	N: 4.8 (5.0) C: 32.5 (32.3) H: 3.8 (4.0)
4 [W(CO){S ₂ CN(CH ₂ Ph) ₂ }(S ₂ CNC ₄ H ₈)- (η^2 -MeC ₂ Me)]	Green	58	N: 4.6 (5.0) C: 43.9 (43.9) H: 4.3 (4.1)
5 [W(CO)(S_2COEt)($S_2CNC_4H_8$)- (η^2 -MeC ₂ Me)]	Green	59	N: 3.7 (4.1) C: 29.8 (29.3) H: 4.0 (3.6)
6 [W(CO)(CH ₃ COCHCOCH ₃)(S ₂ CNC ₄ H ₈)- (n^2 -MeC ₂ Me)]	Brown	59	N: 2.2 (2.6) C: 35.3 (35.2) H: 4.0 (4.1)
7 [W(CO)/CF ₃ COCHCOCF ₃)(S_2 CNC ₄ H ₈)- (η^2 -MeC ₂ Me)]	Orange/brown	63	N: 2.6 (2.7) C: 29.2 (29.1) H: 2.3 (2.4)
8 [W(CO)(CH ₃ COCHCOPh)(S ₂ CNC ₄ H ₈)- (η^2 -MeC ₂ Me)]	Red	62	N: 2.1 (2.3) C: 41.6 (41.9) H: 4.4 (4.1) N: 2.2 (2.4)

TABLE 1. Physical and analytical data for the compounds $[W(CO)(S_2CX)(S_2CNC_4H_8)(\eta^2-MeC_2Me)]$ and $[W(CO)(O-O)(S_2CNC_4H_8)(\eta^2-MeC_2Me)]$

CHCO(CH₃)]} to afford the first examples of mixedligand complexes of the type [W(CO)(LL)(S₂CNC₄H₈)- $(\eta^2$ -MeC₂Me)].

2. Results and discussion

Reaction of [W(CO)(NCMe)($S_2CNC_4H_8$)(η^2 -MeC₂- Me_{2} [BF₄] with 1 equiv. of M(LL) {M(LL) = Na[S₂- $CNMe_2$ · 2H₂O, Na[S₂CNEt₂] · 3H₂O, [NH₄][S₂- CNC_4H_8], Na[S₂CN(CH_2Ph)₂], K[S₂COEt], Na[OC-(CH₃)CHCO(CH₃)], Na[OC(CF₃)CHCO(CF₃)] or Na-[OC(Ph)CHCO(CH₃)]} in CH₂Cl₂ at room temperature afforded good yields of the new mixed ligand complexes $[W(CO)(LL)(S_2CNC_4H_8)(\eta^2-MeC_2Me)]$ (1-8). The complexes (1-8) have been characterized by elemental analysis (C, H and N) (Table 1), IR, ¹H and in selected cases ¹³C NMR spectroscopy (Tables 2-4). The complexes 1-8 are all stable for prolonged periods when stored under nitrogen in the dark; however, they slowly decompose when exposed to air in solution. Complexes 1-8 also show no tendency to disproportionate into $[W(CO)(LL)_2(\eta^2-MeC_2Me)]$ and [W- $(CO)(S_2CNC_4H_8)_2(\eta^2-MeC_2Me)]$, which is in contrast with the results obtained from the reactions of the complexes $[WI(CO)(S_2CX)(\eta^2-MeC_2Me)_2]$ and 1 equiv. of Na[S₂CX'], in an attempt to synthesize the mixed ligand complexes $[W(CO)(S_2CX)(S_2CX')(\eta^2 -$ MeC₂Me)], which resulted in a mixture of the symmetric bis(dithiocarbamate) complexes [18]. The non-occurrence of disproportionation of the mixed-ligand complexes formed from the cation [W(CO)(NCMe)(S₂-CNC₄H₈)(η^2 -MeC₂Me)₂][BF₄] is likely to be due to the absence of the potentially nucleophilic iodide that is liberated from the complexes [WI(CO)(S₂CX)(η^2 -MeC₂Me)₂] on treatment with a second equivalent of an anionic ligand. Also, it has been shown that treatment of [W(CO)(S₂CNEt₂)₂(η^2 -MeC₂Me)] with NaI in the presence of [WI₂(CO)(NCMe)(η^2 -MeC₂Me)₂] and MeC₂Me affords [WI(CO)(S₂CNEt₂)(η^2 -MeC₂Me)₂]

TABLE 2. Infrared data ^a for the compounds $[W(CO)(S_2CX)(S_2-CNC_4H_8)(\eta^2-MeC_2Me)]$ and $[W(CO)(O-O)(S_2CNC_4H_8)(\eta^2-MeC_2Me)]$

Complex	ν (C=O) (cm ⁻¹)	ν (C=O) (cm ⁻¹)	ν (C=C) (cm ⁻¹)
1	1898s	_	1680vw
2	1903s	-	1675vw
3	1902s	-	1668vw
4	1902s	-	1605vw
5	1905s	-	1645vw
6	1897s	1610s	1690vw
7	1900s	1620s	1685vw
8	1905s	1595s	1685vw

^a Spectra recorded in CHCl₃ as thin films between NaCl plates s = strong, vw = very weak.

Complex	¹ Η NMR δ (ppm)
1	3.54 (bm, 4H, NCH ₂); 3.15 (s, 6H, \equiv CMe); 3.05 (s, 3H, NMe); 2.90 (s, 3H, \equiv NMe); 2.05 (bm, 4H, CH ₂)
2	3.7 (bm, 8H, NCH ₂); 3.25 (5, 6H, $=$ CM _e); 2.0 (bm, 4H, CH ₂); 1.45 (bm, 6H, CH ₃)
3	3.62 (bm, 8H, NC H_2); 3.21 (s, 6H, \equiv CMe); 2.0 (bm, 8H, C H_2)
4	7.6–7.2 (bm, 10H, Ph-H); 4.5 (s, 4H, NC H_2 Ph); 3.7 (bm, 4H, NC H_2); 3.45, 3.29 (d, 6H, =CMe); 2.05 (bm, 4H, C H_2)
5	4.5 (bm, 2H, OC H_2); 3.52 (bm, 4H, NC H_2); 3.21 (s, 6H, \equiv C Me); 2.21 (bm, 4H, C H_2); 1.45 (bm, 3H, C H_2)
б	5.42 (s, 1H, CH); 3.8 (bm, 4H, NCH ₂); 3.32 (s, 6H, \equiv CMe); 2.25 (s, 6H, CH ₃); 2.15 (bm, 4H, CH ₃)
7	6.35 (s, 1H, CH); 3.85 (bm, 4H, NCH ₂); 2.95, 2.87 (d, 6H, \equiv CMe); 2.10 (bm, 4H, CH ₂)
8	7.95–7.25 (bm, 5H Ph <i>H</i>); 6.15 (s, 1H, C <i>H</i>); 4.85 (bm, 4H, NC H_2); 3.3 (s, 6H, $\equiv CMe$); 2.25 (s, 3H, C H_3); 2.05 (bm, 4H, C H_2)

TABLE 3. ¹H NMR data ^a for the compounds [W(CO)(S_2CX)($S_2CNC_4H_8$)(η^2 -MeC₂Me)] and [W(CO)(O-O)($S_2CNC_4H_8$)(η^2 -MeC₂Me)]

^a Spectra recorded in $CDCl_3$ (+25°C) referenced to SiMe₄. s = singlet, d = doublet, t = triplet, m = multiplet, b = broad, bm = broad multiplet.

indicating the flexibility of the dithiocarbamate ligand under these conditions [18].

The infrared spectra of 1-8 all show a strong single carbonyl band at around 1900 cm⁻¹ and a weak absorption around 1650 cm⁻¹ attributed to the ν (C=C) band of the ligated but-2-yne. This is at a considerably lower wavenumber compared with the band from uncoordinated but-2-yne, which is as expected since there is considerable back donation of electron density from filled metal d-type orbitals into empty π^* -orbitals on the but-2-yne. Compounds 6-8 also give a band around 1610 cm⁻¹ attributed to the ν (C=O) of the bound (acac) or equivalent ligand.

The geometry of these complexes is likely to be similar to that found crystallographically for [W(CO)- $(S_2CNEt_2)_2(\eta^2-HC_2H)$] by McDonald *et al.* [11]. The two possible geometries are shown in Fig. 1(a) and (b); however, it is very difficult to distinguish between these two isomers without an X-ray structural determination. Several attempts were made to grow single crystals for X-ray crystallography of 1–8 without any success.

The ¹H NMR spectra all show the expected resonances in accord with the proposed geometry (Fig. 1) with the but-2-yne undergoing rapid propeller-like ro-

tation at room temperature for 1–3, 4, 5 and 8, whereas complexes 4 and 7 show two distinct methyl resonances at room temperature. Similarly, the ¹³C NMR spectra show all the expected features consistent with the geometry (Fig. 1). The but-2-yne contact carbon resonances are all above 200 ppm, which indicates that the but-2-yne is donating four-electrons to the tungsten in these complexes [19].

3. Experimental details

The synthesis and purification of the compounds were carried out under dry nitrogen by standard Schlenk line techniques. The compound $[W(CO)-(NCMe)(S_2CNC_4H_8)(\eta^2-MeC_2Me)_2][BF_4]$ was prepared by the published method [17]. All chemicals used were purchased from commercial sources. The solvent CH_2Cl_2 was dried and distilled before use.

Elemental analyses (C, H and N) were determined by using a Carlo Erba Elemental Analyser MOD 1106 (using helium as a carrier gas). Infrared spectra were recorded on a Perkin–Elmer 1430 ratio recording infrared spectrophotometer. ¹H and ¹³C NMR spectra were recorded on a Bruker AC 250 CP/MAS NMR spectrometer, with tetramethylsilane as a standard.

Compound	¹³ C NMR δ (ppm)	
2	238.1 (s, $C \equiv C$); 212.46 (s, $C \equiv O$); 200.58 (s, CS_2); 197.6 (s, CS_2); 50.7 (s, NCH_2); 49.7 (s, NCH_2);	
	44.8 (s, NCH ₂); 44.1 (s, NCH ₂); 24.98 (s, CH ₂); 20.36 (s, ≡CMe); 12.77 (s, CH ₃); 12.22 (s, CH ₄)	
3	238.1 (s, $C \equiv C$); 212.19 (s, $C \equiv O$); 197.6 (s, CS_2); 50.73 (NCH ₂); 49.81 (s, NCH ₂); 49.6 (s, NCH ₂):	
	49.47 (s, NCH ₂); 24.8 (s, CH ₂); 24.87 (s, CH ₂); 24.68 (s, CH ₂); 24.48 (s, CH ₂); 20.47 (s, $\equiv CMe$)	
4	238.16 (s, $C \equiv C$): 237.22 (s, $C \equiv C$); 213.1 (s, $C \equiv O$); 203.58 (s, CS_2); 197.5 (s, CS_2);	
	$138.47 \rightarrow 127.93$ (bm, Ph-C); 52.56 (s, NCH ₂); 50.94 (s, NCH ₂) 49.8 (s, NCH ₂);	
	49.3 (s, NCH ₂); 24.99 (s, CH ₂); 24.67 (s, CH ₂); 20.60 (s, \equiv CMe); 20.48 (s, \equiv CMe)	
8	238.89 (s, $C \equiv \tilde{C}$); 210.1 (s, $C \equiv \tilde{O}$), 193.78 (s, CS_2); 183.3 (s, $C = O$); 181.0 (s, $C = O$);	
	138.3-126.9 (m, Ph-C); 97.32 (s, CH); 49.78 (s, NCH ₂);	
	49.44 (s, NCH ₂); 24.95 (s, CH ₂); 24.30 (s, CH ₂); 20.44 (s, =CMe); 16.3 (s, CH ₃)	

TABLE 4. ¹³C NMR data ^a for selected complexes [W(CO)(S_2CX)($S_2CNC_4H_8$)(η^2 -MeC₂Me)] and [W(CO)(O-O)($S_2CNC_4H_8$)(η^2 -MeC₂Me)]

^a Spectra recorded in CDCl₃ (+25°C) referenced to SiMe₄. s = singlet, m = multiplet.

Fig. 1. Possible geometries for $[W(CO)(LL)(S_2CNC_4H_8)(\eta^2 - MeC_2Me)](1-8)$.

3.1. $[W(CO)(S_2CNMe_2)(S_2CNC_4H_8)(\eta^2-MeC_2Me)]$ (1)

To a stirred solution of $[W(CO)(NCMe)(S_2CNC_4-H_8)(\eta^2-MeC_2Me)_2][BF_4](0.5 g, 0.841 mmol) in CH_2Cl_2 (20 cm³) under a stream of dry dinitrogen was added Na[S_2CNMe_2] · 2H_2O (0.1506 g, 0.841 mmol). After 20 h stirring, the solution was filtered and the solvent volume reduced to 0.5 cm³$ *in vacuo* $. Addition of diethyl ether and cooling yielded analytically pure green crystals of <math>[W(CO)(S_2CNMe_2)(S_2CNC_4H_8)(\eta^2-MeC_2-Me)]$ (1) (0.25 g, 69%).

Similar reactions of $[W(CO)(NCMe)(S_2CNC_4H_8)-(\eta^2-MeC_2Me)_2][BF_4]$ with an equimolar quantity of Na[S₂CNEt₂] · 3H₂O, $[NH_4][S_2CNC_4H_8]$, Na[S₂CN-(CH₂Ph)₂] or K[S₂COEt] in CH₂Cl₂ at room temperature afforded the analogous compounds $[W(CO)-(S_2CX)(S_2CNC_4H_8)(\eta^2-MeC_2Me)]$ (2–5) (see Table 1 for physical and analytical data).

3.2. $[W(CO)(CH_3COCHCOCH_3)(S_2CNC_4H_8)(\eta^2-MeC_2Me)]$ (6)

To a stirred solution of $[W(CO)(NCMe)(S_2CNC_4-H_8)(\eta^2-MeC_2Me)_2][BF_4]$ (0.5 g, 0.841 mmol) in CH_2Cl_2 (20 cm³) under a stream of dry dinitrogen was added Na[acac] (generated by the action of NaH on acac in thf) (0.1027 g, 0.841 mmol). After 20 h stirring, the solution was filtered to remove Na[BF_4] and the solvent volume reduced to 0.5 cm³. Addition of diethyl ether and cooling yielded analytically pure brown crystals of $[W(CO)(CH_3COCHCOCH_3)(S_2CNC_4H_8)(\eta^2-MeC_2Me)]$ (6) (0.254 g, 59%).

Similar reactions of $[W(CO)(NCMe)(S_2CNC_4H_8)-(\eta^2-MeC_2Me)_2][BF_4]$ with an equimolar quantity Na[CF_3COCHCOCF_3] and Na[C₆H₅COCHCOCH_3] in CH₂Cl₂ at room temperature afforded the analogous neutral compounds $[W(CO)(\widehat{O O})(S_2CNC_4H_8)(\eta^2-MeC_2Me)]$ (7, 8) (see Table 1 for physical and analytical data).

Acknowledgements

K.R.F. thanks the SERC for a studentship.

References

- 1 J. L. Templeton, Adv. Organomet. Chem.,, 29 (1989) 1 and refs therein.
- 2 M. Green, J. Organomet. Chem., , 300 (1986) 93 and refs. therein.
- 3 P. L. Watson and R. G. Bergman, J. Am. Chem. Soc., 102 (1980) 2698.
- 4 J. L. Davidson and G. Vasapollo, J. Chem. Soc., Dalton Trans., (1985) 2239.
- 5 P. B. Winston, S. J. N. Burgmayer, T. L. Tonker and J. L. Templeton, Organometallics, 5 (1986) 1707.
- 6 P. Umland and H. Vahrenkamp, Chem. Ber., 115 (1982) 3580.
- 7 E. M. Armstrong, P. K. Baker and M. G. B. Drew, J. Organomet. Chem., 336 (1987) 377.
- 8 J. W. McDonald, W. E. Newton, C. T. C. Creedy and J. L. Corbin, J. Organomet. Chem., 92 (1975) C25.
- 9 J. L. Templeton, R. S. Herrick and J. R. Morrow, Organometallics, 3 (1984) 535.
- 10 B. C. Ward and J. L. Templeton, J. Am. Chem. Soc., 102 (1980) 1532.
- 11 L. Ricard, R. Weiss, W. E. Newton, G. J.-J. Chen and J. W. McDonald, J. Am. Chem. Soc., 100 (1978) 1318.
- 12 M. A. Bennett and I. W. Boyd, J. Organomet. Chem., 290 (1985) 165.
- 13 L. Carlton and J. L. Davidson, J. Chem. Soc., Dalton Trans., (1988) 2071.
- 14 J. L. Davidson and G. Vasapollo, J. Chem. Soc., Dalton Trans., (1988) 2855.
- 15 E. M. Armstrong, P. K. Baker and M. G. B. Drew, Organometallics, 7 (1988) 319.
- 16 E. M. Armstrong, P. K. Baker, K. R. Flower and M. G. B. Drew, J. Chem. Soc., Dalton Trans., (1990) 2535.
- 17 P. K. Baker, K. R. Flower, M. E. Harman and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., (1990) 3169.
- 18 E. M. Armstrong and P. K. Baker, unpublished results.
- 19 J. L. Templeton and B. C. Ward, J. Am. Chem. Soc., 102 (1980) 3288.